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Experiments on the nonlinear stages of 
free-shear-layer transition 

By RICHARD W. MIKSAD 
Department of Meteorology, Massachusetts Institute of Technology-f 

(Received 2 November 1971 and in revised form 3 May 1972) 

An experimental study is made of the instability and transition of a laminar free 
shear layer by sound excitation. Primary emphasis is placed on the nonlinear 
stages of transition. Transition from laminar instability to turbulent breakdown 
covers approximately five wavelengths of downstream distance. The instability 
has six distinct regions of behaviour : a region of exponential growth described by 
linear theory; a nonlinear region where critical-layer effects are important, and 
harmonics and subharmonics are generated; a region of finite amplitude equili- 
bration of the fundamental mode; a region of finite amplitude triggered sub- 
harmonic instabilities; a region of three-dimensional longitudinal vortex forma- 
tion; and a final region of weak secondary instabilities and turbulent breakdown. 

1. Introduction 
Free-shear-layer instability and transition occur randomly in fully turbulent 

flow; such phenomena must play an important part in the process of generation 
and maintenance of turbulence. The present experiments on instability and 
transition in a free shear layer may help our understanding of some of the more 
complicated processes which occur in turbulent flow; the results may form the 
basis for further analysis. 

Our work builds upon the previous work of Sat0 (1956, 1959, 1960), Sat0 & 
Kuriki (1961), Sat0 & Okada (1966), Browand (1966) and Freymuth (1966). 
Their work established the applicability of linear theory to the early stages of 
instability, and the presence of subharmonic oscillations and weak secondary 
instabilities. Kelly (1967) obtained analytical explanations for the subharmonic 
oscillation. Landau (1944), Stuart (1960) and Watson (1960) have studied b i t e  
amplitude effects on disturbance growth. The present results in general support 
their theoretical results and present a more detailed picture of the sequence of 
instabilities and interactions which lead to transition. 

Present address : Division of Atmospheric Sciences, University of Miami, Coral 
Gables, Florida. 
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FIGURE I .  (a )  Schematic drawing of the experimental apparatus, not to scale. (b)  Co- 
ordinate reference frame for the data plots in figures 2 and 3. Figures 4 and 5 use the same 
format. Viewing angles L and R are for the left- and right-hand plots in figure 9. Figure 5 
is viewed from L. 

2. Experimental arrangement 
The small low turbulence tunnel built for the experiment is shown in figure 1 (a) ,  

while figure 1 ( b )  shows the co-ordinate system. The test section, where the two 
streams join to form the free shear layer, is 12.5 x 13.5 em in cross-section and 
40 ern long. The angle between the side walls was adjusted to give zero streamwise 
pressure gradient for the first 25 ern downstream of the splitter plate. An auto- 
matic traversing mechanism allowed the position of a hot-wire anemometer 
(Shapiro & Edwards Model 50, constant current) to be programmed in a con- 
tinuous traverse in any direction. Most of the results presented in this paper 
were obtained by traversing the hot wire a t  a low speed normal to the mean 
stream at streamwise locations 0.5 em apart for fifty downstream locations, 
The mean and fluctuating components of probe signal, as well as the excitation 
signal and voltages corresponding to 2, y, x probe position were simultaneously 
recorded on separate tracks of a magnetic tape for later analog and digital 
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Y h  

FIGURE 2. Vertical profiles of mean velocity G(x,  y) and contours of constant velocity in 
naturally excited instability. Velocity profiles made at 0.5 cm downstream intervals. 
Contour interval is G/Gp = 0.05. GT = 203 cm/s, FB = 33 cm/s, Reynolds number = 
[AFB,(Z.,)]/V = R(z,,) = 150. 

analysis. Each traverse gave the local vertical distribution of r.m.s. velocity 
of all frequency components in the instability. Since the results for a given 
set of parameters were obtained in a single set of runs, probIems of repeat- 
ability of experimental conditions were largely eliminated. 

The absolute error in mean flow velocity is of order 3 % with a relative accuracy 
of 1 %. The error in velocity fluctuations is estimated to be of order & 5 yo. 

The choice of using two streams to generate the shear layer rather than using a 
flow into air a t  rest enabled us to have all fluctuations occurring as perturbations 
on a mean flow. This made hot-wire measurement much simpler as it minimized 
instrumentation problems encountered when signal amplitudes are large com- 
pared with local mean velocity. A second advantage in using merging streams 
is that the velocity of propagation of disturbances was increased by advection, 
making spatial growth rates less than that for a shear flow into a medium at rest. 
This gave better spatial resolution, although we did not find it necessary to take 
full advantage of this feature. 

3. The mean velocity field 
Figure 2 shows the mean velocity as a function of x (to the right) and y (back 

to the left), where x is downstream and y is normal to the splitter plate. On a 
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FIGURE 3. Vertical profiles of mean velocity U(z, y) and contours of constant velocity when 
8 = 0.222 is excited. /3 = 0.222 is near most unstable disturbance. Contour interval is 
%/ET = 0.05. GT = 202 cmfs, EB = 38 cm/s, R(so) = 145. 

FIGURE 4. Vertical profiles of mean vertical shear a%/ay. /3 = 0.222 is excited. Profiles made 
at 0.5 cm downstream intervals. (aJ/ay)T = 641 s-l, (t3G/ay)B = - 62 s-l, R(z,) = 145. 
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FIGURE 6 .  Vertical profiles of mean downstream shear aE/az. /3 = 0.222 is excited. Profiles 
made at  0.5 cm downstream intervals. ( a i Z / 8 ~ ) ~ ~  = 13 s-l at z,,, R(z,) = 145. 

plane below are projections of the contours of constant velocity. This mean 
velocity field was measured with natural instability and transition in the shear 
layer. It is strongly two-dimensional in the central 8 x 8 cm of the test section, 
Note the wake of the plate and the almost parallel flow region which persists 
for approximately ten shear-layer thicknesses. For contrast, figure 3 shows the 
mean velocity field during artificial excitation of the most unstable mode of 
instability. Note how there are now two regions of almost parallel flow. This 
latter feature is also apparent in the profiles of vertical shear 8ii/ay shown in 
figure 4, while the downstream variations of aii/ax shown in figure 5 provide 
a measure of the departure from parallel flow. Having established some of the 
features of the mean flow, we now proceed to show the results for natural and 
forced instability and transition. 

4. Instability and transition 
The Reynolds numbers of the two boundary layers on the splitter plate were 

both below the critical Reynolds number for laminar boundary-layer instability. 
Growing disturbances in the wake of the splitter plate must therefore be caused 
by instability of the free shear layer. 

The field of velocity fluctuations will be described as a sum of terms of the form 

u’(X,t)  = 2Bu~.,.S.(x)exp [ i ( a T . : - P t + ~ 2 + ~ 3 ) - a i x ] 1  

where a, and P are downstream wavenumber and frequency. $2 and q& are phase 
angle variations with y and x (where z is parallel to the mean vorticity) and - ai is 
the spatial growth rate in the downstream x direction. 



7 00 R. W .  Miksad 

Natural instability and transition 

The results for disturbances excited by the free-stream turbulence and extraneous 
noise are shown for reference in figure 6, which contains a set of spectra of stream- 
wise velocity fluctuations measured a t  y = 0-2 cm for a number of downstream 
positions. The spectra show first amaximumnear 16 Hz and, further downstream, 
a maximum near 8Hz. This is in agreement with previous observations of 
Browand (1966) and others. 
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FIGURE 6. Downstream frequency spectra of disturbances in natural excited instability. 
y = 0.2 em, bandwidth = 1.0 Hz, sweep speed = 0.055 Hz/s, time constant = 10 9. 

GT = 230 cm/s, ?ie = 38 cm/s, R(zJ = 170. x is measured in centimetres. 
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FIGURE 7. Frequency spectra in natural excited instability. z = 12*00cm, y = 0.0cm, 
amplitude axis is in arbitrary units, bandwidth = 1.0 Hz, sweep speed = 0.055 Hz/s, 
time constant = 10 s, I?(%,,) = 170. 
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Oscillations a t  16 HZ and 45 Hz, the sub- and #-harmonic frequencies of the 
dominant fundamental, were evident in spectra taken at other vertical locations. 
Asample is shown in figure 7 .  The presence of subharmonic oscillations is a definite 
feature of free-shear-layer instability and is not due to nonlinear instrument 
response. Sub- and $-harmonics did not appear when the mean flow was changed 
to a symmetric wake. This is in agreement with the previous observations of Sat0 
& Okada (1966). 

The spectra in figures 6 and 7 were made with a Quan Tech 304 Spectrum 
Analyser, using a bandwidth of 1.0 Hz at 3 dB down (maximally flat Butter- 
worth type with 24 dB slopes) and asweep of 0.055 Hz/s, with a I0 s time constant. 

Methods of excitution of disturbances 

Regular sinusoidal disturbances were introduced by means of a loudspeaker 
placed in the upper stagnation chamber. The frequency of excitation was much 
lower than the frequency of sound waves of wavelengths comparable to the 
dimensions of the apparatus. The turbulence level in the tunnel was lo-* times 
uT, the velocity of the upper stream. The loudspeaker injected a disturbance 
flow field of order 10-3r.m.s. ; typical r.m.s. amplitudes of the excited instability 
fluctuations were of order r.m.s. The r.m.s. velocities given in this paper 
are all normalized with GT, the velocity of the upper stream. 

It is believed that the principal effect of the loudspeaker excitation was to 
shift the location of the stagnation point on the splitter plate up and down, thus 
injecting vorticity in the free shear layer. This supposition is supported by our 
observation that a loudspeaker placed at  the downstream end of the wind tunnel 
was rather ineffective in exciting shear-layer disturbances and, in particular, 
antisymmetric disturbances. 

- 

5. Experimental results 
A number of naturally unstable modes were excited and their instability 

studied. Details of the instabilities depend on excitation frequency, but their 
overall features are qualitatively similar. Attention will be focused on the 
instability excited at  29.5 Hz, which is near the frequency of the most unstable 
disturbance of the natural transition. 

Figure 8 shows frequency spectra of streamwise velocity fluctuations for 
different values of x at y = 0.2 cm, using an excitation frequency of 29.5 Hz 
(i.e. p = 0.222). It is evident that the disturbance field is much more organized in 
terms of discrete frequency components than is the case for natural instability. 
The generation of sharply eentred harmonic modes is evident at x = 5-00cm. 
A broad shifting band of subharmonics centred at 16 Hz emerges at  x = 13.00 em, 
while a similar shifting band of 3-harmonics centred near 45 Hz appear slightly 
later. The downstream development of the vertical profiles of streamwise r.m.s. 
fluctuations is shown in figure 9. The profiles were made by traversing the shear 
layer at  very low speeds (0.25 mm/s) as described earlier and passing the recorded 
signal through a band-pass filter. A bandwidth of c 0-5Hz was used for the 
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FIGURE 8. Downstream u : , ~ , ~ .  frequency spectra of disturbances. = 0.222 is excited. 
y = 0*2cm, bandwidth = l-OHz, sweep speed = 0-55Hz/s, time constant = 1 s, 
5 i ~  = 210 cm/s, 5 i ~  = 38 cm/s, R(z,) = 162. 

harmonic modes, while a & 5 Hz bandwidth was required for the broader sub- and 
$-harmonic bands . 

Six distinct regions of downstream instability development were observed for 
the excited disturbances. For convenience they are referred to as regions I-VI 
and are identified in table 1 for the instability of the most unstable disturbance. 
The behaviour of other less unstable disturbances of higher and lower frequency 
will be noted where appropriate. 

Region I; initial instability and small amplitude growth 

In  the initial small-amplitude region of transition, excited disturbances grow 
exponentially with downstream distance. The spatial growth rates of disturbances 
were determined two ways; in terms of the growth of the maximum amplitude of 
4,m.8., which grows as exp ( -aj, x) and also in terms of E,, which grows as 
exp ( - 2a; x), where 

L is much larger than the shear-layer thickness, and 8,,(xo) is the sum of the 
momentum thickness of the two entering boundary layers. Ur is the maximum 
mean velocity of the upper stream. The measured growth rates are compared 
in figure 12 with spatial and temporal stability calculations based on the 
initial velocity field at  xo, the point of merging. The measured mean velocity 
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FIGVRE 9. Vertical profiles of &,s. for disturbances in the spectra of the /? = 0.222 
excited instability. Profiles made a t  0.5 cm downstream intervals. R(z,) = 145. p = 
fundamental mode, uim.JiZ~ amplitude axis = 0.155 full scale; 2p = second harmonic, 
amplitude axis = 0.165; 3p = third harmonic, amplitude axis = 0.055; &p = subharmonic, 
amplitude axis = 0,155; #p = 8-harmonic, amplitude axis = 0.055. 

2 (om) 

FIG- 10. Downstream growth of u:.,,.. maxima. Excitation at ,8 = 0.222; R(zo) = 
145. x , B; 0, 2p;  v, 3/3; 0, 4p; a, &3. ---, theoretical Landau equilibration curve. 
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FIGURE 11. Downstream growth of E,, the vertically integrated u:,,,~, energy of dis- 
turbances when /3 = 0.222 is excited; R(z,) = 145. X ,  p;  0,  2p; A, 3p; 0, +p; v, &3. 

Approximate 
Region extent (om) Characteristics 

I 0-3.50 Fundamental mode grows exponentially and 
obeys linear theory. No nonlinear modes are 
measurably present. 

exponentially ; harmonics and subharmonics 
I1 3'50-5.00 Fundamental mode continues to grow 

I11 

I V  

V 

VI 

5.00-11.50 

1 1.50-1 4.00 

14.00-20.50 

20.50-24.50 

appear, and grow exponentially. The harmonic 
modes are not unstable modes of the basic 
flow. 

Fundamental mode deviates from exponential 
growth and equilibrates into iinite amplitude 
oscillations ; harmonics and subharmonics 
equilibrate in unison with the fundamental 
mode. 

Sub- and $-harmonics start a second region of 
growth; fundamental mode remains in 
equilibration ; second and third harmonics start 
to decay. 

Termination of fundamental mode equilibration. 
Three-dimensional distortions of the funda- 
mental appear and a secondary vortex 
structure is formed; second and third harmonics 
decay strongly; sub- and &harmonic growth 
rates decrease. 

mittent secondary instabilities appear ; dis- 
turbance spectra loses discrete character. 
Three-dimensional activity dominates the flow. 

Final breakdown into turbulence. Inter- 

TABLE 1. Identification of downstream characteristics of the instability 
excited a t  p = 0.222. R(z,) = 150, p = (271.f~ 2Om(xo))/E~. 
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FIGURE 12. Spatial growth rates (-a*) of the unstable fundamental modes in the linear 
region of transition. a, experimentally measured growth rates of excited disturbances. 
Bars indicate spread in growth rates measured in the natural instability. - - -, -at, 
theoretical spatial growth rates ; -, - a, C,/C,, theoretical temporal calculation growth 
rates. Theoretical calculations based on measured mean velocity profile at  zo. 

profile was approximated by a trapezoidal profile (Howard 1964) and has two 
classes of instability: class I, due to the lower inflexion point, and class 11, due 
to the upper inflexion point. The class I instabilities are of extremely low fre- 
quency and have small growth rates and long wavelengths. They could not be 
detected in the existing apparatus. The class I1 instabilities dominate the transi- 
tion and are similar to the instabilities calculated by Michalke (1965) for a hyper- 
bolic-tangent profile. The dominance of the class I1 modes reflects the difference 
in the maximum shears of the two entering layers. 

Although maximum growth rates predicted by the two models differ by 34 yo, 
the most unstable mode frequencies differ by only 5.8 yo and are both centred 
near the frequency of the experimentally determined, most unstable mode. The 
neutral points of both models coincide and agree within experimental error with 
the neutral point observed in the natural transition. The difference in maximum 
growth rates predicted by the temporal and spatial models may be due to the 
fact that group velocity transformations are only valid for weakly amplified 
disturbances. This has also been noticed in experiments by Mattingly (1968). 

The spatial calculations did not converge for large la,l and results are shown 
only up to the most unstable mode. The results of both models are given in 
table 2 along with the corresponding experimental values. The results of previous 
workers are included for comparison. These were typically obtained for single- 
inflexion-point shear layers and correspond to our class I1 instabilities; they 
have been scaled accordingly. 

Experimental values of growth rate and phase speed were measured over 
the first wavelength of transition. In  this distance, significant variations in 

45 F L M  56 
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Model 

Miksad 

Miksad 

Miksad 

Browand 

Sat0 

Freymuth 

(experiment) 

(spatial) 

(temporal) 

(experiment) 

(experiment) 

Frequency 

0.2175 

0.2216 

0.2090 

0.227 

0.2208 

0,2140 

(8) 
Growth rate 

( - a,) 
-ai = 0.1970 

-ai = 0.2370 

a,c,/c, = 0.1560 
a,ci/c, = 0.1540 
-at = 0.220 

-ai = 0.184 

-a, = 0.180 

Wavenumber 
(4 

0.380 

0.414 

0.396 

0.36 & 0.08 

0.37 

- 

Phase speed 
(C,) 

0.570 

0.536 

0.547 

0.58 f 0.11 

0.54 & 0.08 

- 

(experiment) 

(spatial) 

(temporal) 

Michalke 0.2067 -ai = 0.2284 0.4031 0.5137 

Michalke 0.223 arcj/c, = 0.1898 0.4446 0.5000 

TABLE 2.  Experimental and theoretical eigenvalues for the maximally 
unstable disturbance 

0 0.1 0.3 0.3 0.4 

PI 
FIGURE 13. Measured values of phase speed C, for excited disturbances. Measurements 
made in first 6.0 em of growth. R(z,) = 160 & 20. Dashed curve is the phase speed pre- 
dicted by spatial stability calculations at z,,. 

mean flow and maximum shear occur. The reasonably close agreement of growth 
rates and phase speeds with the theoretical results predicted for the initial 
velocity field a t  x,, indicates an initial insensitivity of the instabilities to the 
evolving mean flow. The spreading of the mean flow only seemed to cause a 
downstream spreading in the disturbance u ; . ~ . ~ ,  profiles. 

An interesting feature of the small-amplitude region is evident in figure 14, where 
variations in group velocity with frequency are plotted. The results show that 
the minimum group velocity occurred at  the frequency of the most unstable mode. 
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FIGURE 14. Experimentally computed group velocities C, of the excited disturbances. 
Values calculated from a least-squares polynomial approximation to measured values of 
wavenumber and frequency. 
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FIGURE 15. Downstream variations in disturbance growth rate predicted by temporaI 
parallel-flow stability calculations based on locally measured mean velocity profiles. 
Dashed curve is the mode I instability at zo. All other curves are for mode I1 instabilities. 
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FIGURE 16. Contours of the downstream variations in 277 phase repetition distance for the 
/3 = 0.222 disturbance as seen in a co-ordinate frame moving with the phase velocity of 
the fundamental mode. UT = 210 cm/s, UB = 38 cm/s, R(x,) = 150. 

.Y = 1 .oo .x=3,00 x = 5.00 x = 7.00 x=9.00 s= 11.00 

' L  .Y = 12.00 .~=13.00 F! X =  14.00 . ~ = 1 5 , 0 0  ~~~~ .x= 16.00 .~=17,00 X =  18.00 ~ = 1 9 , 0 0  t3~ii x=20.00 ~ = 2 1 . 0 0  .x=22.00 ~ = 2 3 . 0 0  

FIGURE 17. Downstream profiles of the vertical variations in phase of the 
/3 = 0.222 disturbance. R(z,) = 150. z measured in centimetres. 

The stability characteristics of subsequent measured profiles beyond xo are 
shown in figure 15. Each succeeding profile was taken to represent a new parallel- 
flow stability problem. In each case a multi-sided trapezoidal velocity profile 
was fitted to the measured profiles, Because of poor spatial model convergence, 
temporal calculations were used as a rough estimate of downstream behaviour. 

Disturbance wavelengths were measured by making downstream traverses 
and noting the distance between 271 changes in phase. Wavelengths measured on 
this basis showed considerable variation with vertical location. Similar results 
have been reported by Browand (1966) and others. Contours of 2rphase repetition 
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distance are plotted in figure 16. Miksad (1970) noted that the wavelength 
measuring technique used in this experiment, and by past workers, effectively 
transfers one’s measurements to a co-ordinate frame moving with the disturbance 
phase velocity. The disturbance streamlines viewed in this frame form Kelvin’s 
cat’s eyes. We are not looking directly at disturbance streamlines in figure 16, but 
a similar structure is evident. 

Although wavelengths measured by phase repetition varied with location, the 
characteristic streamwise scale of successive closed contours is relatively con- 
stant. For a simple travelling wave in a co-ordinate frame moving with the dis- 
turbance phase speed, the distance between the centres of successive streamline 
cat’s eyes is equivalent to the disturbance wavelength. The distance between 
closed contours (as in figure 16) was used to evaluate some wavelengths in this 
experiment. Wavelengths measured by phase repetition tended to approach the 
cat’s eye spacing as the outer edges of the shear layer were approached. 

Phase variations in the vertical, shown in figure 17 for the 31 Hz disturbance, 
initially have a simple 180’ change near the critical layer as predicted by linear 
spatial theory (Michalke 1965). However, the phase profiles evolve into a compli- 
cated structure as the disturbance amplitude increases. Spanwise phase measure- 
ments showed that the disturbance was two-dimensional in this region. 

Region 11: onset of nonlinear activity 
Figure I 0  shows that harmonic and subharmonic modes start to grow at 
x = 4.00 em. The fundamental mode amplitude is of order 2 x lob2 times the U,. 
This is a smaller amplitude than that normally assumed for the onset of nonlinear 
activity and indicates a restriction on linear theory. The generation of harmonic 
modes coincides with a slight kink, at  x = 3.50 em, in the E, curve of the funda- 
mental mode. This may represent a transfer of energy to the harmonic modes. 
Growth rates of the harmonics and subharmonics of four disturbances were 
measured and are given in table 3. The growth rates measured when p = 0.222 
and /3 = 0.162 were excited are based on E, growth. Those measured when 
p = 0.113 and ,8 = 0.264 were excited are based on the growth of u ; , ~ , ~ .  maxima 
and have a nominal scatter of & 10 yo. 

P = 0.113 

0.110 
0- 149 
0.169 
0.139 
0.163 
0.135 

3P 0.186 

Mode - a( 

P 
2P 
3P 
4P 
5P 
BP 

P = 0.162 
- a& 
0.138 
0.160 
0.230 
0.176 
0-187 
0.170 
0.164 

p = 0.222 
- a( 

0.197 
0.303 
0.302 
0.316 
0.290 
0.247 
0.187 

P = 0.264 
- a( 

0.180 
0.260 
0.282 
0.284 
0.313 
0.200 
0.183 

TABLE 3. Measured spatial growth rates of disturbances when /3 = 0.113, 
0.162, 0.222 and 0.262 are excited respectively. R ( x )  = 160 f 20. 

The measured growth rates of harmonic modes range from 1.15 to 1.73 times 
that of their fundamental. In  particular all harmonics of p = 0-222 grow nearly 
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FIGURE 18. Downstream variations in A = (E*R) -~  when 
/3 = 0.222 is excited. R(z,) = 150. 

1.5 times as fast as their fundamental. To within experimental accuracy, this 
holds for the harmonics of /3 = 0.264. These are smaller growth rates than those 
predicted by weak nonlinear theories based on a viscous-dominated critical 
layer. However, as was pointed out by Dr J.Robinson (1971, unpublished 
manuscript), several features of harmonic growth agree with strong nonlinear 
theories which consider nonlinear terms at  the critical layer. 

The use of viscous terms leads to the traditional Orr-Sommerfeld problem 
with a viscous-dominated critical layer of order S, = \arR/-*. Benney & Bergeron 
(1969) found that nonlinear terms give rise to a nonlinear-dominated critical 
layer of order 8, = €4, where e is the disturbance amplitude. The appropriateness 
of the two approaches is determined by the parameter A = (&R)-l, which can be 
viewed as proportional to (S,/S,J3; R is the local Reynolds number. Viscous 
theory applies when A 9 1, nonlinear theory when A < 1. At A = O(1) both 
mechanisms must be considered. Note that even for moderate Reynolds numbers 
a large disturbance amplitude can make A approach O( 1).  

Measured values of e(z) and Reynolds number (based on local momentum 
thickness) were used to calculate A(x). As is shown in figure 18, A approaches 
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O(1) at  the point where harmonics of /3 = 0.222 are generated, indicating that 
nonlinear effects at the critical layer may be important. 

Robinson found that, for A < 1, nonlinear effects in a free shear layer can 
force all harmonics at  order E or €3, giving rise to harmonic growth rates of 1 or 
1.5 times that of the fundamental. The order of forcing depends on the location 
of the critical point and mean flow inflexion point. If the two coincide, harmonics 
are forced a t  &. If the two are well separated, harmonics are forced at order E .  

In  the instabilities excited at  p = 0.222 and 0.264, the critical point and inflexion 
point almost coincide at x = 4.00 cm, and measured harmonic growth rates are 
nearly 1.5 times that of their fundamental. The agreement with the theory is 
close, even though A is of order one. In  the instabilities excited at  /3 = 0.162 and 
0.113, the critical and inflexion points are separated, but the separations are 
of order 13%~. The measured growth rates of the harmonics of /3 = 0.162 and 0.113 
roughly fall between 1 and 1.5 times that of their fundamentals. 

First region of sub- and 3-hccrmonic generation. The generation of harmonics at  
x = 4.00 cm is accompanied by weak intermittent sub- and $-harmonic oscilla- 
tions. The fundamental mode amplitude, of order 2 x times the ?iT velocity, 
is smaller than that reported by past workers for subharmonic activity. 
Browand ( 1966), for example, found sub- and $-harmonics only after the funda- 
mental equilibrated a t  finite amplitudes of order 10-l times the ;ilT velocity. The 
presence of small exponentially growing sub- and #-harmonic oscillations in this 
experiment is not felt to be spurious or due to nonlinear instrument response. 
Subharmonic oscillations were measured in regions of flow where disturbance 
amplitudes were small compared with the local mean velocity. Subharmonic 
oscillations did not appear in measurements of instability of symmetric wakes 
made with the same hot-wire system. The early growth of sub- and $-harmonic 
oscillations seems to be an inherent feature of the instability of separated free 
shear layers. 

The growth rates of the sub- and #-harmonic modes are of the same order as the 
harmonic mode growth rates but it is not clear whether their generation is 
connected with the generation of harmonics. For example, although sub- and 
$-harmonics start to grow a t  the same location as the harmonics in the p = 0.222 
andp = 0*162insfabilities, they aregeneratedat earlierlocationsin theb = 0.113 
and /3 = 0.264 instabilities. This was especially noticeable for /3 = 0.264 excita- 
tion, where subharmonic oscillations appeared half a fundamental mode wave- 
length before the second harmonic. 

Raetz (1959) considered interactions which can lead to the generation of 
difference frequency modes. Such an interaction between two growing funda- 
mentals, one of which has half the frequency of the other, can produce a 
subharmonic. The growth rate of the generated mode is the sum of the rates for 
the two interacting modes. Forp = 0.222 andp = 0-162 excitation, the measured 
subharmonic growth rates were close to the sum of the measured fundamental 
growth rate and the theoretical spatial growth rate of the half-frequency mode 
as calculated by linear theory a t  x = 4.00 cm. 

The measured relative rates of sub- and #-harmonic growth vary with excitation 
frequency. In low-frequency excitation, for p < 0.162 the $-harmonic growth 
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FIGURE 19. Equilibration amplitudes of excited disturbances. Solid symbols represent 
modes influenced by test section boundaries. R(z,) = 160 & 20. 

rate usually exceeds that of the subharmonic. For /3 > 0.162 the subharmonic 
growth rate generally exceeds that of the $-harmonic. This may reflect the fact 
that for /3 < 0-162 and sub- and #-harmonic frequencies are valid unstable modes 
of the basic flow (with the #-harmonic frequency more unstable). The opposite is 
true for /3 > 0.162 where the $-harmonic is often a stable or nearly stable mode of 
the basic flow. 

Region I11 : Jinite amplitude equilibration 

At approximately x = 5-00cm the growth of the fundamental mode starts to 
deviate from its initial exponential rate (see figures 10 and 11). By x = 7.00cm 
the deviation is significant and by x = 9.00cm the r.m.s. amplitude and E, 
energy equlibrate into relatively constant finite values. Equilibration persists 
until x = 14.00 cm, when strong three-dimensional distortions occur. The prob- 
lem of finite amplitude equilibration was first considered by Landau ( 19441, and 
later by Stuart (1960) and others. Liu (1969) considered the problem of spatially 
growing disturbances and showed that the amplitude of the equilibrating funda- 
mental is governed by an equation of the form 

d\4X)12/dX = ).(X)I2 Pa,, + 2a,,le(x) 1 2 ) ,  15.1) 

where e(x)  is the fundamental mode amplitude and a,, is the Landau coefficient. 
It represents the first-order and nonlinear dynamics which can act to  limit 
fundamental mode growth. Equation (3.1) has the solution 

le(x)lZ = a0,Ce2aor”/(I -a,Ce2aor”), 

where C is an arbitrary real constant determined experimentally by the initial 
conditions a t  x,,. 

In  the limit of small amplitudes the disturbance growth must be exponential, 
and a,, = --ai. If equilibration is to occur, a,, must be non-zero, negative and 
equal to A,/ - ai (where A, is the equilibration amplitude). Measured values of 
A,, - -ai and the initial amplitude were used to determine a,, and C for the /3 = 

0.222 fundamental mode. I S ( X ) ( ~  was then evaluated. As shown in figure 10, the 
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agreement with experiment is close. Values of a,, were also determined for other 
fundamental modes and as shown in figure 20, a,, tends to increase with frequency. 

Stuart (1958), by making certain approximations, was able to show for a 
limited range of Reynolds numbers in plane Poiseuille flow that the equilibrium 
amplitude is determined by the Reynolds number a t  equilibration: 

141' = [Ke(Re-%)I/urE. 
The coefficient K, measures the ratio of net energy transfer t o  the fundamental 
(including viscous dissipation) to the rate a t  which Reynolds stress distortions of 
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the mean flow reduce its ability to transfer additional energy to the fundamental 
mode. If the two are in balance, K, = O(1). 

Measured values of equilibration amplitudes and Reynolds numbers are 
shown in figure 21; the experimental points fall along a relatively straight line 
with unit slope (i.e. K, = O(1) for all modes except the long wavelength, low- 
frequency modes, which are influenced by the test section boundaries). The unit 
slope indicates that, to a good approximation, Stuart’s approach may be appli- 
cable to free-shear-layer equilibration. 

As is indicated in figures 19,20 and 21, the small test section geometry exerted 
a limiting influence on the growth of long wavelength disturbances. Howard 
(1964) considered the influence of boundaries on temporally growing disturbances 
in a hyperbolic-tangent mean flow bounded by rigid walls at  *yo. His results 
indicate that the finite spacing of the boundaries will tend to stabilize distur- 
bances for a,y0 < 1.997, which for the present test section geometry corresponds 
to 01, < 0.20. Boundary influence was experimentally observed for 01, < 0.175. 
Disturbances excited below this value initially grow at exponential rates pre- 
dicted by linear theory, but equilibrate at  smaller amplitudes than those reported 
by Freymuth (1966). 

Region IV: second region of subharmonic growth 

At x = 10*5cm, the sub- and &harmonic modes undergo a strong but inter- 
mittent region of nearly exponential growth. The existence of a definite stop in 
sub- and #-harmonic growth between regions I1 and IV suggests that the 
responsible mechanisms differ in the two regions. As figures 10 and 11 show, the 
second region of subharmonic growth coincides with a definite equilibration of 
the fundamental at an amplitude of order 0.12 times the ;li, velocity. This is 
equivalent to U:.~.JAE = 0.145, where AZL is the velocity difference across the 
shear layer. The E, energy of the fundamental mode is not affected by the onset of 
subharmonic growth. A similar result was noted by Browand (1966)’ and, as 
suggested by Kelly (1967), may indicate that the fundamental mode is acting as a 
catalyst to allow the direct passage of energy from the mean flow to the sub- 
harmonic. 

Apart from the intermittency of the subharmonic, the essential features of this 
region are consistent with the work of Kelly (1967)’ which showed that finite 
amplitude oscillations of the fundamental can act to reinforce subharmonic 
oscillations without decreasing the energy of the fundamental itself. He found a 
critical threshold amplitude of U~.,.~./AU = 0.12. This is in reasonable agreement 
with the measured value of 0-145. The measured subharmonic growth rate is 
0.093, roughly half that predicted by Kelly’s analysis. This may be due to the 
fact that Kelly considered temporally growing disturbances, while the experi- 
mental disturbances are dispersive and grow spatially. The resonance matching 
conditions in Kelly’s analysis are sensitive to dispersion. 

Spanwise measurements of the fundamental mode showed it to be strongly 
two-dimensional at  the point where subharmonic growth is triggered. No measure- 
ments of the spanwise structure of the subharmonic were made. The two-dimen- 



Free-shear-layer transition 715 

-4.0 1 

3 0  
a -1.0 

v -2.0 "i 
-3.0 -4.0 ~ 

0 5 10 15 20 25 

x (cm) 

FIGURE 22. Contours of fundamental mode, second harmonic and third harmonic activity. 
Contours are for U ~ , ~ , ~ , / Z T  equal to 0.005. R(z,) = 145. 

4.0 
3.0 
2.0 

2 1.0 
s o  
a - 1.0 

-2.0 
-3.0 

- 4.0 

0 5' 10 15 20 25 

x (cm) 

FIGURE 23. Contours of fundamental mode, subharmonic, and %-harmonic activity. 
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sional structure of the fundamental persisted until after subharmonic growth was 
established. Three-dimensional distortions then appeared and coincided with 
the first post-equilibration alteration in fundamental mode energy. Three- 
dimensional mechanisms may thus play an important role in the breakdown of 
the fundamental mode equilibration but do not seem to be involved in the 
generation of the subharmonic modes. 

Kelly also found that finite amplitude oscillations of the fundamental mode can 
interact with two latent disturbances, &3 and $p, so as to destabilize the $- 
harmonic mode. This agrees with figure 23, where contours of #-harmonic 
activity in regions IV-VI are confined to the areas where subharmonic and 
fundamental mode activity overlap. 
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FIGURE 24. Spanwise variations in tho phase of the p = 0.222 disturbance. ET = 245 cm/s, 
U ,  = 38 cm/s, R(z,) = 180. (a) y = 0. ( b )  y = 0.20 em. 

Region V: onset of three-d~men~~onal activity and the 
termination of fundamental mode equilibration 

Fundamental mode equilibration terminates a t  about 3.5 wavelengths down- 
stream and is accompanied by three-dimensional distortions of the mean flow 
and fluctuating components. The onset of spanwise activity coincides with a 
noticeable decay of fundamental mode energy along the z = 0 centre-plane. 
<.n,.s. wave-front measurements indicate that this may be due to a spanwise 
redistribution of energy and not to a transfer of energy to other scales of motion. 

All details of this region were not investigated but several features were evi- 
dent. Initial spanwise variations in phase and were most pronounced in 
regions of large a;il/ay. Smoke trace measurements indicate the formation of a 
weak longitudinal vortex structure of ellipsoidal form with major axis along the 
spanwise co-ordinate. The initial spanwise scale of the vortices is of order A, the 
fundamental mode wavelength. As three-dimensional activity increased, the 
spanwise scale decreased to roughly half to two-thirds of A. At the same time, 
the vortices spread rapidly in the vertical direction. 

The development of this vortex structure is in basic agreement with the 
Benney-Lin mechanism (1960), in which a two- and three-dimensional distur- 
bance interact to reinforce spanwise distortions of the fundamental, and generate 
a longitudinal secondary vortex structure. They found that the theoretical 
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spanwise wavelength varied from that of the fundamental wavelength for weak 
three-dimensional effects to half that of the fundamental wavelength when 
strong three-dimensional effects dominate. A similar reduction in wavelength 
was noticed in the experiments as three-dimensional activity increased. 

It is not clear whether the cross-stream boundaries exert spanwise constraints. 
At  best, only two or three fundamental mode wavelengths can fit in the spanwise 
direction. This is not a sufficient degree of freedom to eliminate boundary effects. 
The influence of boundaries must be explored further to establish the repre- 
sentativeness of the three-dimensional mechanisms observed in this experiment. 

Region VI: Jinal breakdown to turbulence 

Once a secondary vortex structure is established transition to turbulence occurs. 
The disturbance spectrum loses its discrete character and evolves into a con- 
tinuous spectrum of intermittent disturbances. Phase measurements showed that 
the phase relationship with the upstream behaviour of the transition is lost. Span- 
wise phase profiles shown in figure 24 have pronounced distortions. Final transi- 
tion is accompanied by the generation of weak secondary instabilities a t  the 
upper and lower edges of the shear layer, with dominent activity along the upper 
edge. Spectral measurements showed no evidence of high-frequency bursts. The 
intermittent secondary instabilities contained oscillations in the P-3p range. 
Although the frequencies of the secondary instabilities were not high in compari- 
son to the frequency of the fundamental, their vertical scale was an order of 
magnitude smaller than the local scale of mean shear. 

6.  Conclusions 
The experiments indicate that the instability of a free shear layer involves a 

series of nonlinear mechanisms. In the initial small-amplitude region, experiment 
is in agreement with spatial linear theory. Nonlinear effects become important 
at  amplitudes of order 2 x times the ZC, velocity and indicate a strong 
restriction on the applicability of linear theory. At fundamental mode amplitudes 
greater than 2 x harmonic, subharmonicand #-harmonicmodesaregenerated 
and grow at smaller exponential rates than those predicted by weak nonlinear 
theory. Although the experiments were run at relatively low Reynolds numbers, 
there is evidence that harmonic generation may involve nonlinear effects a t  the 
critical layer. The evidence of this lies solely in the observed harmonic growth 
rates, and the fact that A = approaches O(1) as harmonic modes are 
generated. The applicability of the work of Benney & Bergeron and Robinson is 
not certain. The finite amplitude equilibration of the fundamental mode may 
involve three-dimensional effects but, in general, equilibration is described by 
the work of Landau (1944) and Stuart (1960). The equilibration process also 
seems to agree with Stuart’s (1958) model, but Davey (1962) has pointed out some 
self-cancelling inconsistencies in Stuart’s work and the significance of the result is 
not clear. The generation of subharmonic oscillations by finite amplitude oscilla- 
tions of the fundamental is adequately described by Kelly’s (1967) theory. 
However, as with the small-amplitude region instabilities, there is a need for 
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theoretical models which consider the spatial growth of disturbances. Three- 
dimensional effects seem to play an important role in the breakdown of funda- 
mental mode equilibration. The onset of strong three-dimensional motions 
basically agrees with the Benney-Lin model. However, the small spanwise 
geometry of the test section may have influenced three-dimensional develop- 
ment. Transition to  turbulence involves weak secondary instabilities but no 
evidence of turbulent bursts or sudden breakdown was observed. 
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